当前位置: 首页 > 新闻中心 > 软件和信息技术服务业数据可视化平台

软件和信息技术服务业数据可视化平台

发布时间:2024-02-12 13:23:02

  1. 国内大数据公司有哪些?
  2. 大数据在哪些领域有应用前景?
  3. 我国的大数据发展现状如何?

一、国内大数据公司有哪些?

国内大数据主力阵营:

1阿里巴巴

阿里巴巴拥有交易数据和信用数据,更多是在搭建数据的流通、收集和分享的底层架构。

2华为华为云服务

整合了高性能的计算和存储能力,为大数据的挖掘和分析提供专业稳定的it基础设施平台,近来华为大数据存储实现了统一管理40pb文件系统

3百度

百度的优势体现在海量的数据、沉淀十多年的用户行为数据、自然语言处理能力和深度学习领域的前沿研究。近来百度正式发布大数据引擎,将在政府、医疗、金融、零售、教育等传统领域率先开展对外合作。

4浪潮

浪潮互联网大数据采集中心已经采集超过2pb数据,并已建立5大类数据分类处理算法。近日成功发布海量存储系统的最新代表产品as130000。

5腾讯

腾讯拥有用户关系数据和基于此产生的社交数据,腾讯的思路主要是用数据改进产品,注重qzone、微信、电商等产品的后端数据打通。

国内做大数据的公司依旧分为两类:一类是现在已经有获取大数据能力的公司,如百度、腾讯、阿里巴巴等互联网巨头以及华为、浪潮、中兴等国内领军企业,涵盖了数据采集,数据存储,数据分析,数据可视化以及数据安全等领域;另一类则是初创的大数据公司,他们依赖于大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。其中大部分的大数据应用还是需要第三方公司提供服务。值得一提的是,在初创公司当中探码科技是一匹黑马,擅长美国互联网前沿技术,崇尚硅谷创业模式,自主研发有核心技术,曾开发并维护美国拥有上千万用户级的网站,并在网络数据采集,大数据解析方面具有突出的能力,也将在国内推出一系列面向政务、企业的创新型大数据研究项目与合作,为各大企业提供高端信息技术咨询服务。

国内大数据主力阵营

1阿里巴巴

阿里巴巴拥有交易数据和信用数据,更多是在搭建数据的流通、收集和分享的底层架构。

2华为华为云服务

整合了高性能的计算和存储能力,为大数据的挖掘和分析提供专业稳定的it基础设施平台,近来华为大数据存储实现了统一管理40pb文件系统

3百度

百度的优势体现在海量的数据、沉淀十多年的用户行为数据、自然语言处理能力和深度学习领域的前沿研究。近来百度正式发布大数据引擎,将在政府、医疗、金融、零售、教育等传统领域率先开展对外合作。

4浪潮

浪潮互联网大数据采集中心已经采集超过2pb数据,并已建立5大类数据分类处理算法。近日成功发布海量存储系统的最新代表产品as130000。

5腾讯

腾讯拥有用户关系数据和基于此产生的社交数据,腾讯的思路主要是用数据改进产品,注重qzone、微信、电商等产品的后端数据打通。

6 探码科技探码科技自主研发的dyson只能分析系统,可以完整的实现大数据的采集、分析、处理。一直做的国外项目美国最大的律师平台、医生平台和酒店、机票预订平台的数据采集、分析、处理。将在国内推出一系列面向政务、企业的创新型大数据研究项目与合作,为各大企业提供高端信息技术咨询服务。

7中兴通讯中兴通讯推出的“聚焦ict服务的高效数据中心整体服务解决方案”,可帮助运营商有效解决大数据时代建设idc面临的大部分问题,提升运营商ict融合服务能力。

8神州融神州融整合了国内权威的第三方征信机构和电商平台等信贷应用场景的征信大数据,通过覆盖信贷全生命周期管理的顶尖风控技术,为微金融机构提供大数据驱动的信贷风控决策服务。

9中科曙光

中科曙光xdata大数据一体机可实现任务自动分解,并在多数据模块上并行执行,全面提高了复杂查询条件下的效率。

10华胜天成

胜天成自主研发的大数据产品“i维数据”,颇具创新,近期又与ibm达成战略合作关系,涵盖linux on power市场、智慧城市、存储业务、管理服务、咨询与应用管理服务。

11神州数码“神州数码”启动了“智慧城市”战略布局,先后推出了市民融合服务平台、自助终端服务平台等产品,并在佛山、武汉等“智慧城市”建设中实践运用。

12用友用友在商业分析、大数据处理等领域进行研发,先后推出了用友bq、用友ae等产品。

13东软东软大数据战略以医疗行业为突破口,凭借在社保、医疗行业积累的资源,搭建了东软熙康这一智慧医疗平台。

14金蝶金蝶kbi与金蝶erp无缝集成,实现bi数据采集——集成——分析决策支持的一体化应用。

15宝德宝德大数据云备份,是一个专为大数据而设的云备份方案,支持实体机及虚拟机备份,而且具有无限扩充的可能,并且完全自动。

16启明星辰大数据时代的ip治理和审计,启明星辰提供了终端审计、终端数据防泄露、日志审计,通过综合审计平台来帮助用户解决ip治理需求等解决方案。

17拓尔思

通过收购天行网安,可以拓展在公安行业的应用,目前正着力开拓行业应用市场,挖掘各个产业链中的大数据价值。

18荣之联

零售、证券、生物、政府等都是荣之联大数据业务的主要目标行业,已为零售业提供了大数据分析的解决方案,解决了库存问题。

19中科金财

作为国内领先的高端it综合服务商,主要服务于金融业的大数据。

20美亚柏科

专注于公安市场,其业务包括电子数据取证、电子数据鉴定、网络舆情分析、数字维权、公证云、搜索云以及取证云服务。

大数据系统软件开发公司有哪些(大数据管理公司)

极其流行,同样也是竞争力极其大的一种商业模式。虽然国内软件开发公司都发展壮大起来了,但是各地软件开发公司的实力及资质仍然参差不齐。下面为大家介绍下近期国内软件开发公司的排名汇总。

1:华盛恒辉科技有限公司

上榜理由:华盛恒辉是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在开发、建设到运营推广领域拥有丰富经验,我们通过建立对目标客户和用户行为的分析,整合高质量设计和极其新技术,为您打造创意十足、有价值的企业品牌。

在军工领域,合作客户包括:中央军委联合参谋(原总参)、中央军委后勤保障部(原总后)、中央军委装备发展部(原总装)、装备研究所、战略支援、军事科学院、研究所、航天科工集团、中国航天科技集团、中国船舶工业集团、中国船舶重工集团、第一研究所、训练器材所、装备技术研究所等单位。

在民用领域,公司大力拓展民用市场,目前合作的客户包括中国中铁电气化局集团、中国铁道科学研究院、济南机务段、东莞轨道交通公司、京港地铁、中国国电集团、电力科学研究院、水利部、国家发改委、中信银行、华为公司等大型客户。

2:五木恒润科技有限公司

上榜理由:五木恒润拥有员工300多人,技术人员占90%以上,是一家专业的军工信息化建设服务单位,为军工单位提供完整的信息化解决方案。公司设有股东会、董事会、监事会、工会等上层机构,同时设置总经理职位,由总经理管理公司的具体事务。公司下设有研发部、质量部、市场部、财务部、人事部等机构。公司下辖成都研发中心、西安研发中心、沈阳办事处、天津办事处等分支机构。

3、浪潮

浪潮集团有限公司是国家首批认定的规划布局内的重点软件企业,中国著名的企业管理软件、分行业erp及服务供应商,在咨询服务、it规划、软件及解决方案等方面具有强大的优势,形成了以浪潮erp系列产品ps、gs、gsp三大主要产品。是目前中国高端企业管理软件领跑者、中国企业管理软件技术领先者、中国最大的行业erp与集团管理软件供应商、国内服务满意度最高的管理软件企业。

4、德格dagle

德格智能saas软件管理系统自德国工业40,并且结合国内工厂行业现状而打造的一款工厂智能化信息平台管理软件,具备工厂erp管理、scrm客户关系管理、bpm业务流程管理、

oms订单管理等四大企业业务信息系统,不仅满足企业对生产进行简易管理的需求,并突破局域网应用的局限性,同时使数据管理延伸到互联网与移动商务,不论是内部的管理应用还是外部的移动应用,都可以在智能saas软件管理系统中进行业务流程的管控。

5、manage

高亚的产品 (8manage) 是美国经验中国研发的企业管理软件,整个系统架构基于移动互联网和一体化管理设计而成,其源代码编写采用的是最为广泛应用的

java / j2ee 开发语言,这样的技术优势使 8manage

可灵活地按需进行客制化,并且非常适用于移动互联网的业务直通式处理,让用户可以随时随地通过手机apps进行实时沟通与交易。

福建省大数据集团有限公司怎么样?

大数据系统软件开发公司有哪些

系统软件是有很多种类的,找的时候可以根据具体的种类来选择,不过系统软件开发公司有很多公司可以开发的,主要是如何找到合适自己公司的,依据我们的系统软件开发经验就来为大家介绍如何找到合适的的软件公司

1北京华盛恒辉科技有限公司(北京)

2北京五木恒润科技有限公司(北京)

3东软集团neusoft(沈阳)

4博彦科技beyondsoft(北京)

5海辉软件hisoft(大连)

6文思vanceinfo(北京)

7浙大网新insigma(杭州)

互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一伍扒中间的是壹壹三三最后的是泗柒泗泗,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

一,评估公司整体实力。

一个正规的软件开发公司,一般是需要这家公司拥有自己的研发团队的。

二,从该公司实际开发案例着手,评估该公司的技术实力。

不算是大型软件开发公司还是小点的软件开发团队都有自己的开发案例,我们要怎么样从公司开发案例来评估这家公司的技术实力呢答案是看这家公司合作的客户是谁。通常情况下大型企业对软件开发公司综合实力把控非常严格,能选择有与大型企业合作过的软件开发公司,一般问题就不大。

三,看售后服务

软件开发完成后,软件开发公司的客服会指导客户的技术人员如何使用软件的后台。有些软件开发公司会使用电话、电脑远程协助或者上门技术指导等多种方式使客户可以很轻松的了解如何使用操作软件的后台。一个好的软件开发公司,则应有专业的售后客服、售后团队,除了上线后持续跟进软件运营情况外,还能进行免费协助维护,突发情况发生后的紧急维修等。

大庆高新区大数据有限公司怎么样

福建省大数据集团有限公司成立于2021年08月26日,法定代表人:钟军,注册资本:1,000,0000元,地址位于福建省福州市长乐区文武砂街道智慧路8号1号楼15层。

公司经营状况:

福建省大数据集团有限公司目前处于开业状态,招投标项目1项。

建议重点关注:

爱企查数据显示,截止2022年11月26日,该公司存在:「自身风险」信息1条,涉及“经营异常”等。

以上信息来源于「爱企查app」,想查看该企业的详细信息,了解其最新情况,可以直接打开爱企查app

中国有哪些金融大数据公司?

大庆高新区大数据有限公司好。

1、技术实力强:公司拥有先进的大数据处理技术和成熟的大数据分析算法,能够为客户提供高效、准确的数据处理和分析服务。

2、产品丰富:公司的产品线涵盖了数据挖掘、数据分析、数据可视化等多个领域,能够满足客户不同的需求。

3、服务质量高:公司注重客户服务,提供高质量、高效率的服务,能够满足客户多样化的需求。

大数据公司排名是什么样的_大数据企业排名

中科院附属《互联网周刊》发布了2021年金融大数据30强榜单,并评选出今年以来在金融大数据方面取得突出进展的代表性企业。随着大数据和人工智能技术在金融领域的创新与实践,融汇金科上榜了!《互联网周刊》创刊于1998年,是中国互联网和it行业最成功的主流商业杂志之一。早在几年前,《互联网周刊》就开始在互联网行业发布各类榜单,在业内具有很高的权威性。此次入选榜单,无疑是对荣辉金科强大的研发能力和行业领先的金融科技布局的肯定。

依托行业领先的大数据挖掘、人工智能建模等技术能力,以及多年的金融风险管理和数据管理实践经验,融汇金科建立了一套成熟完善的数据管理平台建设解决方案,帮助金融机构对外部数据进行统一系统的管理,从外部数据的引入到退出全过程的生命周期控制,确保全面实现业务和风险控制的高精度科学决策。此前,融汇金科作为首批成员单位之一,先后加入工信部区块链技术与数据安全重点实验室“数据安全治理工作组”和中国信息技术研究院“卓鑫大数据计划”。它将与政府、工业、大学和研究机构携手共建双赢局面。通过大数据安全基础设施建设、技术实践、行业应用落地等工作,共同推动数据安全高效流通和数字经济高质量发展。

正如《互联网周刊》提到的,“以大数据、人工智能、5g等产业为核心的新基础设施正在成为数字经济发展的新动力。作为智能风控决策和系统解决方案的一站式高端金融科技服务商,融汇金科将在新技术、新业务、新模式等方面不断创新和实践。并依托大数据挖掘和分析能力,不断探索大数据产业链的整合和应用,全面实现金融业和产业的持续优化升级。

中国金融服务业大数据分析服务市场总收入1093亿元,其中金融风险管理收入323亿元,客户生命周期管理收入770亿元,后者包括吸引新客户和现有客户管理。预计2019年至2024年,大数据分析服务市场将继续保持快速增长,2024年将达到2524亿元人民币,年复合增长率为182%。准确、客观、中立的大数据分析结果是客户寻求大数据分析服务的关键要素。独立服务商可以更准确地识别客户需求,避免利益冲突,保持客观性和中立性,更好地服务客户。2014年至2019年,金融服务业独立大数据分析服务提供商的市场份额将从23%提高到97%,预计2024年将进一步提高到168%。

国内有哪些大数据公司

阿里云、华为云、百度、腾讯。

1、阿里云:这个没话讲,就现在来说,国内没有比它更大的了。阿里的大数据布局应该是很完整的了,从数据的获取到应用到生态、平台,在大数据这行,绝对的扛把子!

2、华为云:整合了高性能的计算和存储能力,为大数据的挖掘和分析提供专业稳定的it基础设施平台,近来华为大数据存储实现了统一管理40pb文件系统。(华为云好像目前是不怎么对外开放的)

3、百度:作为国内综合搜索的巨头、行业老大,它拥有海量的数据,同时在自然语言处理能力和机器深度学习领域拥有丰富经验。

4、腾讯:在大数据领域腾讯也是不可忽略的一支重要力量,尤其是社交领域,只是想想qq和微信的用户量就觉得可怕。

大数据是宝藏,人工智能是工匠。大数据给了我们前所未有的收集海量信息的可能,因为数据交互广阔,存储空间近乎无限,所以我们再也不用因“没地方放”而不得弃掉那些“看似无用”的数据。

当数据变得多多益善,当移动设备、穿戴设备以及其他一切设备都变成了数据收集的“接口”,我们便可以尽可能的让数据的海洋变得浩瀚无垠,因为那里面“全都是宝”。

国内大数据主力阵营:

1、阿里巴巴

阿里巴巴拥有交易数据和信用数据,更多是在搭建数据的流通、收集和分享的底层架构。

2、华为华为云服务

整合了高性能的计算和存储能力,为大数据的挖掘和分析提供专业稳定的it基础设施平台,近来华为大数据存储实现了统一管理40pb文件系统。

3、百度

百度的优势体现在海量的数据、沉淀十多年的用户行为数据、自然语言处理能力和深度学习领域的前沿研究。近来百度正式发布大数据引擎,将在政府、医疗、金融、零售、教育等传统领域率先开展对外合作。

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5v特点(ibm提出):volume(大量)、velocity(高速)、variety(多样)、value(低价值密度)、veracity(真实性)。

对于“大数据”(big data)研究机构gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

二、大数据在哪些领域有应用前景?

近年来,大数据不断向世界的各行各业渗透,影响着我们的衣食住行。例如,网上购物时,经常会发现电子商务门户网站向我们推荐商品,往往这类商品都是我们最近需要的。这是因为用户上网行为轨迹的相关数据都会被搜集记录,并通过大数据分析,使用推荐系统将用户可能需要的物品进行推荐,从而达到精准营销的目的。下面简单介绍几种大数据的应用场景。

大数据在医疗行业的应用大数据让就医看病更简单。过去,对于患者的治疗方案,大多数都是通过医师的经验来进行,优秀的医师固然能够为患者提供好的治疗方案,但由于医师的水平不相同,所以很难保证患者都能够接受最佳的治疗方案。

而随着大数据在医疗行业的深度融合,大数据平台积累了海量的病例、病例报告、治愈方案、药物报告等信息资源所有常见的病例、既往病例等都记录在案,医生通过有效、连续的诊疗记录,能够给病人优质、合理的诊疗方案。这样不仅提高医生的看病效率,而且能够降低误诊率,从而让患者在最短的时间接受最好的治疗。下面列举大数据在医疗行业的应用,具体如下。

(1) 优化医疗方案,提供最佳治疗方法。

面对数目及种类众多的病菌、病毒,以及肿瘤细胞时,疾病的确诊和治疗方案的确定也是很困难的。借助于大数据平台,可以搜集不同病人的疾病特征、病例和治疗方案,从而建立医疗行业的病人分类数据库。如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊,明确地定位疾病。在制订治疗方案时,医生可以依据病人的基因特点,调取相似基因、年龄、人种、身体情况相同的有效治疗方案,制订出适合病人的治疗方案,帮助更多人及时进行治疗。同时这些数据也有利于医药行业研发出更加有效的药物和医疗器械。

(2)有效预防预测疾病。

解决患者的疾病,最为简单的方式就是防患于未然。通过大数据对于群众的人体数据监控,将各自的健康数据、生命体征指标都集合在数据库和健康档案中。通过大数据分析应用,推动覆盖全生命周期的预防、治疗、康复和健康管理的一体化健康服务,这是未来健康服务管理的新趋势。当然,这一点不仅需 要医疗机构加快大数据的建设,还需要群众定期去做检查,及时更新数据,以便通过大数据来预防和预测疾病的发生,做到早治疗、早康复。当然,随着大数据的不断发展,以及在各个领域的应用,一些大规模的流感也能够通过大数据实现预测。

大数据在金融行业的应用随着大数据技术的应用,越来越多的金融企业也开始投身到大数据应用实践中。麦肯锡的一份研究显示,金融业在大数据价值潜力指数中排名第一。下面列举若干大数据在金融行业的典型应用,具体如下。

(1) 精准营销。

银行在互联网的冲击下,迫切需要掌握更多用户信息,继而构建用户360立体画像,即可对细分的客户进行精准营销、实时营销等个性化智慧营销。

(2) 风险管控。

应用大数据平台,可以统一管理金融企业内部多源异构数据和外部征信数据,更好地完善风控体系。内部可保证数据的完整性与安全性,外部可控制用户风险。

(3) 决策支持。

通过大数据分析方法改善经营决策,为管理层提供可靠的数据支撑,从而使经营决策更高效、敏捷、精准。

(4) 服务创新。

通过对大数据的应用,改善与客户之间的交互、增加用户黏性,为个人与政府提供增值服务,不断增强金融企业业务核心竞争力。

(5) 产品创新。

通过高端数据分析和综合化数据分享,有效对接银行、保险、信托、基金等各类金融产品,使金融企业能够从其他领域借鉴并创造出新的金融产品。

大数据在零售行业的应用美国零售业曾经有这样一个传奇故事,某家商店将纸尿裤和啤酒并排放在一起销售,结果纸尿裤和啤酒的销量双双增长!为什么看起来风马牛不相及的两种商品搭配在一起,能取到如此惊人的效果呢后来经过分析发现,这些购买者多数是已婚男士,这些男士在为小孩购买尿不湿的同时,会同时为自己购买一些啤酒。发现这个秘密后,沃尔玛超市就大胆地将啤酒摆放在尿不湿旁边,这样顾客购买的时候更方便,销量自然也会大幅上升。

之所以讲“啤酒-尿布”这个例子,其实是想告诉大家,挖掘大数据潜在的价值,是零售业竞争的核心竞争力,下面列举若干大数据在零售业的创新应用,具体如下。

(1) 精准定位零售行业市场。

企业想进人或开拓某一区域零售行业市场,首先要进行项目评估和可行性分析,只有通过项目评估和可行性分析才能最终决定是否适合进人或者开拓这块市场。通常需要分析这个区域流动人口是多少消费水平怎么样客户的消费习惯是什么市场对产品的认知度怎么样当前的市场供需情况怎么样等等,这些问题背后包含的海量信息构成了零售行业市场调研的大数据,对这些大数据的分析就是市场定位过程。

(2) 支撑行业收益管理。

大数据时代的来临,为企业收益管理工作的开展提供了更加广阔的空间。需求预测、细分市场和敏感度分析对数据需求量很大,而传统的数据分析大多采集的是企业自身的历史数据来进行预测和分析,容易忽视整个零售行业信息数据,因此难免使预测结果存在偏差。企业在实施收益管理过程中如果能在自有数据的基础上,依靠一些自动化信息采集软件来收集更多的零售行业数据,了解更多的零售行业市场信息,这将会对制订准确的收益策略,赢得更高的收益起到推进作用。

(3) 挖掘零售行业新需求。

作为零售行业企业,如果能对网上零售行业的评论数据进行收集,建立网评大数据库,然后再利用分词、聚类、情感分析了解消费者的消费行为、价值取向、评论中体现的新消费需求和企业产品质量问题,以此来改进和创新产品,量化产品价值,制定合理的价格及提高服务质量,从中获取更大的收益。

什么是大数据,大数据时代有哪些趋势?

大数据为什么有很好的发展前景:

第一:大数据自身能够创造出更多的价值。大数据相关技术紧紧围绕数据价值化展开,数据价值化将开辟出广大的市场空间,重点在于数据本身将为整个信息化社会赋能。随着大数据的落地应用,大数据的价值将逐渐得到体现。目前在互联网领域,大数据技术已经得到了较为广泛的应用。

第二:数据发展日新月异,我们应该审时度势、精心谋划、超前布局、力争主动,深入了解大数据发展现状和趋势及其对经济社会发展的影响,分析我国大数据发展取得的成绩和存在的问题,推动实施国家大数据战略,加快完善数字基础设施,推进数据资源整合和开放共享,保障数据安全,加快建设数字中国,更好服务我国经济社会发展和人民生活改善。

第三:大数据产业链逐渐形成。经过近些年的发展,大数据已经初步形成了一个较为完整的产业链,包括数据采集、整理、传输、存储、分析、呈现和应用,众多企业开始参与到大数据产业链中,并形成了一定的产业规模,相信随着大数据的不断发展,相关产业规模会进一步扩大。

大数据股票龙头一览表

行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等

本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等

产业概况

1、定义:大数据产业覆盖范围广

根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:

2、产业链剖析:大数据产业链庞大

大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;

大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的it运维等;

大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。

大数据产业上游基础设施具体包括it设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。

中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。

在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。

产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显著提升

我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。

产业政策背景:优化升级数字基础设施,鼓励大数据产业发展

2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。

当前,随着5g、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。

产业发展现状

1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域

——大数据产业规模:2021年超过800亿元

近年来我国大数据行业取得快速发展,赛迪ccid统计,我国大数据市场规模由2019年的6197亿元增长至2021年的8631亿元,复合年增长率达到180%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。

——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主

从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,

ccid统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为405%、257%和338%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。

从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。

ccid统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为191%、165%、152%和139%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。

2、细分市场一:金融大数据

——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升

从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。

近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。

——金融大数据应用场景

过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。

3、细分市场二:政府大数据

——政府大数据需求:互联网政务服务用户规模不断提升

从政府领域需求来看,根据中国互联网络信息中心(cnnic)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达921亿,较2020年12月增长92%,占网民整体的892%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。

——政府大数据应用场景

中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。

4、细分市场三:互联网大数据

——互联网大数据需求:互联网行业规模不断提升

在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长212%。

2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长01%。

注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。

——互联网大数据应用场景

在互联网行业,除了社交、b2c业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。

产业竞争格局

1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区

根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。

2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐

根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。

大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。

政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。

注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。

产业发展前景:大数据将继续保持高速增长

大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到29309亿元,未来六年复合年增长率为226%。

更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。

30060八除八等于多少

大数据股票龙头一览表:

1、福田汽车:大数据龙头股。 2021年第二季度公司实现总营收1606亿,同比增长-1072%;毛利润为1517亿。 公司是百度apollo的合作伙伴,与百度就车联网、大数据、智能汽车和无人驾驶展开全面合作,共同打造面向未来的智能互联网商用汽车。

2、高鸿股份:大数据龙头股。 2021年第二季度,公司实现总营收1925亿,同比增长739%,净利润为6323万,毛利润为1317亿。 公司持有贵州大数据旅游公司30%;主营建设贵州大数据旅游云平台,提供贵州省高分辨率遥感空间信息在各行业的应用服务;18年9月25日公告,子公司与idc运营商设立合资公司。 大数据概念股其他的还有:芭田股份、长信科技、恒华科技、安恒信息等。

龙头股票有哪些:

大数据股票龙头股票主要有海量数据(603138)、科创信息(300730)、新国都(300130)、德生科技(002908)、真视通(002771)、拓尔思(300229)、思特奇(300608)、先进数通(300541)、同有科技(300302)、众应互联(002464)等。

龙头股是指在某一行业中具有影响和号召力的股票,起到带头的作用,其涨跌往往对其他同行业板块股票的涨跌起引导和示范作用。龙头股的技术面表现和成交量都会远远强于同时间的大盘和板块。

龙头股具备的条件:

1、龙头股必须从涨停板开始,涨停板是多空双方最准确的攻击信号,不能涨停的个股,不可能做龙头。

2、龙头股必须是低价股,只有低价股才能得到股民追捧,一般不超过10元,因为高价股不具备炒作空间。

3、龙头股流通市要适中,适合大资金运作和散户追涨杀跌,大市值股票和小盘股都不可能充当龙头。

4、龙头股必须同时满足日kdj,周kdj,月kdj同时低价金叉。

5、龙头股通常在大盘下跌末期端,市场恐慌时,逆市涨停,提前见底,或者先于大盘启动,并且经受大盘一轮下跌考验。

最后提醒:龙头股并不是一成不变的,它的地位往往只能维持一段时间。

解:30060八除八等于( 1/37576 )   

∵a除b = b ÷ a = b/a    

∴300608除8    

= 8 ÷ 300608    

= 8/300608   

= 1/37576   

答:30060八除八等于1/37576

三、我国的大数据发展现状如何?

随着信息技术和人类生产生活交汇融合,全球数据呈现爆发增长、海量集聚的特点。无论是国家、企业还是社会公众,都越来越认识到数据的价值。因此,近年来,各地纷纷成立大数据发展局,企业纷纷推动数据资产治理,大数据辐射的行业也从传统的电信、金融逐渐扩展到工业、医疗、教育等。一时间,仿佛各行各业都在谈大数据,人人都在谈大数据。但也有声音说大数据迎来了“七年之痒”,面对大数据热潮也需要一些“冷思考”。我国大数据究竟发展得如何?未来我国大数据发展还有哪些机遇和挑战?

1、大数据产业进展显著

过去几年,大数据理念已经深入人心,“用数据说话”已经成为所有人的共识,数据也成了堪比石油、黄金、钻石的战略资源。五年来,我国大数据产业政策日渐完善,技术、应用和产业都取得了非常明显的进展。

在政策方面,我国从中央到地方的大数据政策体系已经基本完善,目前已经进入落地实施阶段。自从2014年“大数据”这个词写入政府工作报告以来,我国大数据发展的政策环境掀开了全新的篇章。在顶层设计上,国务院《促进大数据发展行动纲要》对政务数据共享开放、产业发展和安全三方面做了总体部署。《政务信息资源共享管理暂行办法》《大数据产业发展规划(2016-2020)》等文件也都已经出台。十九大报告中提出“推动大数据与实体经济深度融合”,“十三五”规划中提出“实施国家大数据战略”。卫健、农业、环保、检察、税务等部门还出台了领域大数据发展的具体政策。截至2019年初,所有省级行政区都发布了大数据相关的发展规划,十几个省市设立了大数据管理局,8个国家大数据综合试验区、11个国家工程实验室启动建设。可以说,大数据的政策体系已经基本搭建完成,目前已经纷纷进入落地实施甚至评估检查阶段。

在技术方面,我国大数据技术发展属于“全球第一梯队”,但国产核心技术能力严重不足。我国独有的大体量应用场景和多类型实践模式,促进了大数据领域技术创新速度和能力水平,处于国际领先地位。在技术全面性上,我国平台类、管理类、应用类技术均具有大面积落地案例和研究;在应用规模方面,我国已经完成大数据领域的最大集群公开能力测试,达到了万台节点;在效率能力方面,我国大数据产品在国际大数据技术能力竞争平台上也取得了前几名的好成绩;在知识产权方面,2018年我国大数据领域专利公开量约占全球的40%,位居世界第二。但我国大数据技术大部分为基于国外开源产品的二次改造,核心技术能力亟待加强。例如,目前国内主流大数据平台技术中,自研比例不超过10%。

在产业方面,我国大数据产业多年来保持平稳快速增长,但面临提质增效的关键转型。2018年,我国大数据产业延续多年来的增速,继续保持相对高速的增长。根据中国信息通信研究院的测算,2018年我国大数据产业整体规模有望达到5400亿元,同比增长15%。然而,综合国内外环境、新兴技术发展等多种因素,大数据产业的增速出现了下滑。我国的大数据产业也面临着从高速发展向高质量发展的关键转型期。

在应用方面,大数据的行业应用更加广泛,正加速渗透到经济社会的方方面面。随着大数据工具的门槛降低以及企业数据意识的不断提升,越来越多的行业开始尝到大数据带来的“甜头”。无论是从新增企业数量、融资规模还是应用热度来说,与大数据结合紧密的行业正在从传统的电信业、金融业扩展到政务、健康医疗、工业、交通物流、能源行业、教育文化等,行业应用“脱虚向实”趋势明显,与实体经济的融合更加深入。

2、产业的五大困局

虽然我国大数据总体发展形势良好,也面临难得的发展机遇,但仍然存在一些困难和问题。

一是,涉及核心技术的产业发展薄弱,未能有效提升我国核心技术竞争力。核心技术的影响力在大数据产业有着极高的重要性。由于大数据企业在完成产品开发后,可以近乎零成本无限制的复制,因此拥有核心技术的大企业,很容易将技术优势转化为市场优势,即凭借具体的信息产品赢得海量用户获得垄断地位。当前,从大数据技术与产品的供给侧看,我国虽然在局部技术实现了单点突破,但大数据领域系统性、平台级核心技术创新仍不多见。大数据处理工具都是“他山之石”,大部分企业用的都是国外的数据采集、数据处理、数据分析、数据可视化技术,自主核心技术突破还有待时日。尤其是开源产品的技术标准方面,我国的影响力尚亟待提升。

二是,数据孤岛和壁垒降低了大数据产业资源配置效率。大数据产业发展必须实现数据信息的自由流动和共享,如果数据不开放、不共享,数据整合就不能实现,数据价值也会大大降低。无论是政府数据、互联网数据还是其他数据,数据拥有者往往不愿对其进行开放流通。受制于前期信息基础设施建设,目前我国政府数据往往还存在着诸多“数据孤岛”和“数据烟囱”,数据价值难以发挥。

三是,数据安全管理薄弱增加了大数据产业的发展风险。大数据技术为经济社会发展带来创新活力的同时,也使数据安全、个人信息保护乃至大数据平台安全等面临新威胁与新风险。海量多源数据在大数据平台汇聚,来自多个用户的数据可能存储在同一个数据池中,并分别被不同用户使用,极易引发数据泄露风险。利用大数据技术对海量数据(21.90 -5.19%,诊股)进行挖掘分析所得结果可能包含涉及国家经济社会等各方面的敏感信息,需要对分析结果的共享和披露加强安全管理。

四是,产业垄断与恶性竞争现象频发,“劣币驱逐良币”现象明显。由于资源型产业门槛低、利润高,新兴的大数据企业往往首先将目光盯在获取数据资源上面。大量依托数据资源优势的企业诞生,为大数据产业带来了低附加值的垄断经济模式,使得依靠技术壁垒打江山的企业不得不面对残酷的市场竞争,放缓了技术研发的步伐。同时,数据垄断问题也愈发明显。少数互联网巨头企业拥有巨大数据,不但对产业发展不利,甚至存在巨大的数据聚集隐患。

五是,各地发展同质化严重,普遍存在重存储轻应用的现象。由于缺乏统一的大数据产业分类统计体系和产业运行监测手段,各地大数据产业的定位相似,同质化竞争加剧。而盲目的重复建设,更是可能导致大数据产业过剩。同时,由于部分地区信息化发展程度有限,大数据应用场景不够丰富,更是以数据中心等大数据存储设施的建设作为发展大数据产业的关键,且规模巨大,目标动辄以百万台计,后期若无法有效利用,将造成巨大的资源浪费。